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Abstract

Assessments of the relationships between crop productivity and climate change rely upon a combination of

modelling and measurement. As part of this review, this relationship is discussed in the context of crop and climate

simulation. Methods for linking these two types of models are reviewed, with a primary focus on large-area crop

modelling techniques. Recent progress in simulating the impacts of climate change on crops is presented, and the

application of these methods to the exploration of adaptation options is discussed. Specific advances include

ensemble simulations and improved understanding of biophysical processes. Finally, the challenges associated with
impacts and adaptation research are discussed. It is argued that the generation of knowledge for policy and

adaptation should be based not only on syntheses of published studies, but also on a more synergistic and holistic

research framework that includes: (i) reliable quantification of uncertainty; (ii) techniques for combining diverse

modelling approaches and observations that focus on fundamental processes; and (iii) judicious choice and

calibration of models, including simulation at appropriate levels of complexity that accounts for the principal drivers

of crop productivity, which may well include both biophysical and socio-economic factors. It is argued that such

a framework will lead to reliable methods for linking simulation to real-world adaptation options, thus making

practical use of the huge global effort to understand and predict climate change.
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Introduction

Crops exhibit known observed responses to weather and

climate that can have a large impact on crop yield (e.g.

Porter and Semenov, 2005). Since atmospheric concentra-

tions of greenhouse gases continue to rise at rates that are

both unprecedented (Siegenthaler et al., 2005; Spahni et al.,

2005) and alarming (Anderson and Bows, 2008), efforts
have been made to understand the implications for crop

production. These efforts are primarily based on climate

models, which use spatial grids with resolutions typically of

the order of a hundred kilometres. Such simplification of

the spatial heterogeneity of processes has direct implications

for the assessment of the impacts of climate change. Some

of these assessments are performed at the regional scale

(referring here to from tens to a couple of hundred

kilometres—commensurate with climate model grids). In

contrast, location-specific methods have also been devel-

oped, to account for the variety of climatic and non-climatic

stresses on crop productivity often not observable at

aggregated spatial scales. It is at this smaller field scale that

crop models were originally designed to operate (for
reviews, see, for example, Sinclair and Seligman, 1996; van

Ittersum et al., 2003), resulting in applications in decision

support (Boote and Jones, 1998) and ‘discussion support’

(Hansen, 2005).

This review examines the use of crop and climate models

in climate change research. As with the bulk of the literature,

it focuses primarily on crop yield, which has the greatest

impact on food security. By their nature, regional-scale
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assessments lend themselves more clearly to generalization

than do local-scale assessments; hence the focus here

is primarily, though not exclusively, on larger scales. The

methods used to link crop and climate models are examined,

including the implications of the disparity in spatial scale

between these two types of model. Recent progress in

modelling methods and in our resultant understanding of

the impacts of climate change is reviewed. Questions are
asked regarding how we can generate useful information on

impacts and adaptation with the methods reviewed. Finally,

future trends and challenges are identified, leading to con-

cluding comments and recommendations.

Linking crop and climate models

Overview

Simulation models act as a surrogate laboratory. They are

a particularly important tool for understanding climate

change and its impacts, since only one physical realization

of climate is possible, thus limiting the amount of observed

data available for comparison with model output. (This is in
contrast to the forecasting of weather, which can be tested

repeatedly against observations.) A number of different

methods can be used to link crop and climate models.

Figure 1 summarizes the methods discussed herein (a more

detailed review is presented by Hansen et al., 2006). The

box labelled ‘climate model’ represents a range of models,

from short-term local-scale numerical weather prediction to

longer term simulations of climate change. These models
are based on the same fundamental physics, and efforts are

underway to carry out and present weather and climate

simulation as part of a ‘seamless’ continuum, such that the

commonality of methods across weather and climate pre-

diction is strengthened and made more clear to users (see,

for example, Challinor et al., 2009b). For this reason, all

model-derived climate and weather information is repre-

sented in this simple fashion.

Climate model output can be used with crop models

either directly (Mavromatis and Jones, 1999; Challinor

et al., 2005a, b, c) or via some post-processing. In the latter

case, a weather generator (Semenov and Barrow, 1997) may

be used, and/or the change in climate simulated using

a model can be applied to observed climate (Zalud and
Dubrovsky, 2002 compare the two methods; Southworth

et al., 2002 use both methods). Results when using

processed output are sensitive to the underlying assump-

tions (Mearns et al., 1997; Mavromatis and Jones, 1998).

Unprocessed climate model output has the advantage of

being a consistent representation of climate, thus avoiding

the need for such assumptions. The corresponding disad-

vantage is that any errors in the climate model may have
implications for the simulation of crop growth. For

example, climate models tend to overestimate the number

of rainy days whilst underestimating amounts of rainfall

(i.e. ‘drizzle’), and may also fail to represent the observed

month-to-month variation in rainfall; some of these biases

are easier to correct than others, and this can affect crop

simulation (Challinor et al., 2005a). However, model error

may not be overly problematic: Challinor et al. (2005c)
found predictability in crop yields using climate model

output both with and without correction of bias in the

simulation of mean climate.

As well as dealing with climate model error, post-

processing can deal with the disparity in spatial scale

between climate and crop models (see, for example, Hansen

and Jones, 2000; Challinor et al., 2003, 2004). The former

uses a grid that is coarse relative to the spatial scale at
which field-scale crop models typically operate. The dispar-

ity can either be ignored (Trnka et al., 2004) or it can be

dealt with by downscaling climate model output (Wilby and

Wigley, 1997; Kidson and Thompson, 1998; Wilby et al.,

1998). With or without downscaling, it is clear (Moen et al.,

1994; Faivre et al., 2004) that regional prediction using crop

and climate models cannot rely solely on methods de-

veloped as part of the longer standing tradition of crop
simulation at the field scale. Whilst the results of field-scale

models can be compared directly with regional-scale yields

(Yun, 2003; Nain et al., 2004; Xiong et al., 2007), it can be

argued that this requires design or selection of crop models

that have a low input data requirement (Priya and

Shibasaki, 2001; de Wit et al., 2005). An alternative is to

take a field-scale crop model and make it applicable to the

regional scale through one or more procedures, such as
calibration (Chipanshi et al., 1999; Jagtap and Jones, 2002),

aggregation of inputs (Haskett et al. 1995), and aggregation

of outputs from multiple subgrid simulations. This latter

method can use either simulations sampled by varying

model inputs such as planting date and crop variety (Jagtap

and Jones, 2002; Irmak et al., 2005) or else simulations

explicitly carried out at the subgrid scale (Thornton et al.,

1996).
Estimates of yields at the regional scale can also be made

by designing a crop model that operates on that scale. Such

Fig. 1. Schematic representation of methods used to combine

crop and climate models. Solid arrows show climate information;

dashed arrows and lightly shaded boxes show crop growth

simulation. Solid boxes show numerical models; boxes with dotted

outlines show model output. Areas where boxes overlap indicate

models that operate on commensurate spatial and temporal

scales.
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a model may be empirical, with weather variables used

within a statistical regression of output from a field-scale

crop model (Iglesias et al., 2000) or of observed yield data

(Lobell et al., 2008). The use of regressions of field-scale

crop models can introduce significant errors through the

linearization of the equations for crop yield and/or an

inability to account for subseasonal climate variability

(Challinor et al., 2006). More generally, the validity of
empirical methods under climate change is limited by the

necessity of using data outside the range for which the

models were fitted. Also, statistical models have no

explanatory power to enable understanding as to why

certain changes have occurred. This is one reason why

process-based regional-scale (or large-area) methods have

been developed.

Large-area crop modelling

Large-area crop modelling resulted mainly from the need to

simulate the impacts of climate variability and change on

crops in a process-based fashion using the output from

climate models directly (i.e. without any downscaling). The
rationale for such techniques (Challinor et al., 2004) lies in

the combination of the benefits of empirical approaches

(low input data requirement; validity over large spatial

scales, thus avoiding site specificity) with those of field-scale

process-based models (validity under a range of environ-

ments, including climate change). The development of meta-

models, based on existing simulation models, takes a similar

approach, but for simulation at the field scale (Brooks et al.,
2001). The focus here is on larger scales, at which the

modelling methodology is based upon a number of princi-

ples.

(i) A basis in observed relationships. Where a response to

climate variability exists in observations, the possibility of

simulating that response also exists. Challinor et al. (2003)

examined observed relationships between yield and climate
in India at a number of spatial scales, and concluded that

large-area modelling (i.e. using the same grid as climate

models) of that response was possible. Such empirical

studies are prone to the risk of confounding causality

(Bakker et al., 2005); this is the reason that subsequent

modelling should be based both on physiological processes

and at an appropriate level of complexity. The limited

length of historical records means that studies of observed
relationships have focused principally on year-to-year

variability (e.g. Challinor et al., 2003; Kumar et al., 2004).

However, climate change implies longer term relationships,

and these are beginning to be explored (see Lobell and

Field, 2007).

(ii) Appropriate complexity. The crop modelling community

has long been aware of the dangers associated with
modelling at a level of complexity unwarranted by the

degree of uncertainty and potential error associated with

the parameterizations used (Monteith, 1996). The greater

the number of processes simulated, the greater the number

of potential interactions between them and the number of

parameters that require calibration, thereby increasing the

potential for error. Sinclair and Seligman (2000) discuss this

issue using the concept of hierarchical levels of biological

organization, from molecules to ecosystems. They argue

that it is rarely justified for a crop model to simulate

processes more than one hierarchical level below the level of

immediate interest, because of the ‘burgeoning complexity

inherent in increasing the number of lower hierarchical

levels’. Therefore, if yield is the variable of interest, then

only the mechanisms near to the yield-determining pro-

cesses should be simulated. This approach reduces the risk

of overtuning a model to one environment (i.e. confounding

causality), which can result in a lack of applicability in

other environments. The spatial scale and complexity of

a model are related, as discussed by Challinor and Wheeler

(2008b) and Tubiello and Ewert (2002).

(iii) High fraction of observable parameters. In order to
avoid overtuning, parameters should, where possible, be

based on observations. This means that the parameter-

izations used are directly testable. Empirically determined

parameters can be based entirely on processes (Challinor

et al., 2004), or else a semi-empirical approach can be used,

for example with a process-based plant water stress index

being empirically related to yield (Potgeiter et al., 2005).

Care should be taken not to use parameters observed for

the current climate in situations where their value may have

changed, as occurs for some processes under climate

change. For current climates, discrepancies between the

yield simulated by process-based models and observed

regional yields can be minimized through a process-based

yield gap parameter (Challinor et al., 2004) or an explicit

error metric (Casellas et al., 2009). The choice of calibration

method and the level of model complexity have implications

for the reliability of model simulations (see later).

The principles above result in large area-crop models

differing substantially from field-scale crop models. Large-

area models tend to be less complex and have fewer

parameters, and fewer non-observable parameters in partic-

ular. For example, the model of Challinor et al. (2004)

simulates leaf area growth by using a parameter specifying

the maximum rate of change of leaf area index, rather than

simulating the appearance of individual leaves. The model

uses transpiration efficiency, another observable parameter,

to simulate the accumulation of biomass, rather than

employing leaf-level assimilation equations, as most field-

scale models do. Such an approach is appropriate in water-

limited environments; a parallel approach in the UK might

employ radiation-use efficiency.

As with any model, large-area crop models should be
used judiciously. By design, they have the advantage of

being both process based and applicable over large areas.

However, their focus on the influence of weather and

climate, and their basis in observed relationships, means

that large-area crop models do not currently simulate the

non-climatic determinants of crop yield. These non-climatic

stresses contribute to the yield gap, which is the difference

between the potential yield for a current crop variety (i.e.
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under the given climate and for optimal agronomic

practices) and the corresponding observed farm yields (see,

for example, Herdt and Mandac, 1981; van Ittersum et al.,

2003). These observed (farm and regional) yields include the

effects of weeds, pests and diseases, and air pollutants such

as tropospheric ozone. Where variability in yield is driven

by these factors, rather than climate, or where there is high

subgrid spatial variability in weather (see Baron et al. 2005),
the rationale for large-area modelling may be undermined.

However, the significance of the climate signal tends to be

greatest at regional scales (Challinor et al., 2003; Bakker

et al., 2005). Thus, the proven ability to simulate current

yields (Challinor et al., 2004), together with assessment of

skill under likely climate change conditions (Challinor et al.,

2005d), has built confidence in the use of large-area models

as part of efforts to simulate the response of crops to
climate change.

Progress in modelling and understanding the
impact of climate change on crops

Ensemble modelling

Under climate change, inherent uncertainties in the pre-

dictability of climate limit the precision with which impacts

can be assessed. Furthermore, the response of crops to

elevated carbon dioxide is not known with precision at field

and larger scales (Ewert et al., 2002; Tubiello and Ewert,
2002). Quantification of uncertainty is therefore an impor-

tant endeavour in climate impacts research (see, for

example, Challinor et al, 2009b). Estimates of ranges of

yield impacts vary across studies (see, for example, the

review of Luo and Lin, 1999). The simulated responses of

maize in Africa to a doubling of carbon dioxide, for

example, can be as broad –98% to +16%, or as narrow as

–14% to –12%. These ranges have been determined using
different methods and are therefore not directly comparable

(Challinor et al., 2007). Ensemble modelling is a technique

that enables more objective quantification of uncertainty. It

is commonly used in climate change prediction, which is

based on estimates of future emissions of greenhouse gases,

and on the simulation of the resultant influence on climate.

Multiple climate simulations, known as ensembles, are used

to sample the inherent uncertainties in this process. Un-
certainty in model structure can be assessed by using more

than one model (Randall et al., 2007) or by varying model

parameters (Murphy et al., 2004; Stainforth et al., 2005).

These ensembles of climate simulations can be used with

crop models, and sometimes weather generators, to produce

an ensemble of crop yields that captures uncertainty due to

climate simulation (Trnka et al., 2004).

The response of crops to any projected climate also
contains uncertainties (see, for example, Mearns, 2003).

Inputs to crop models, such as the choice of variety and

planting date, can be varied in order to produce an

ensemble of crop simulations (Jagtap and Jones, 2002;

Irmak et al., 2005). Large-area modelling studies have been

carried out where both crop and climate parameters have

been varied, thus permitting a better estimate of total

uncertainty and of the relative contributions to that un-

certainty (Challinor et al., 2005b, 2009a). Large-area crop

modelling is well suited to this approach, since it operates

with direct climate model output. Studies using this

technique have contributed to our understanding of the key

processes that are likely to reduce crop yield, and the
quantification of associated uncertainty.

Understanding biophysical processes under climate
change

Direct impact of atmospheric composition: Elevated levels of

carbon dioxide and ozone will have direct impacts on crops:

C3 crops are likely to accumulate more biomass, and both

C3 and C4 crops are likely to use less water as atmospheric

carbon dioxide concentrations increase. These processes

have received much attention from both experimentalists

and modellers in recent decades. Significant increases in

plant growth and yield due to CO2 elevation have been
reported from controlled, semi-controlled, and open-field

experiments for a range of crops, and to a lesser extent for

crops grown in the field (Kimball et al., 1983, 2002). Many

recent studies modelling the impact of climate change on

crops have simulated the effects of elevated CO2; however,

the number of free air carbon dioxide enrichment (FACE)

experiments available to validate these models under field

conditions is still limited (Tubiello and Ewert, 2002).
It has been argued (Long et al., 2006) that crop models

overestimate the effect of CO2 on plant growth and yield, as

a result of the CO2-related model parameters being mainly

derived from controlled and semi-controlled experiments,

which typically show a higher CO2 response than observed

under field conditions. However, there is growing evidence

that crop models are able to reproduce the observed crop

responses in the FACE experiments (Ewert et al., 2002;
Asseng et al., 2004; Tubiello et al., 2007a). This evidence is

contributing to an ongoing dialogue (see Ainsworth et al.,

2008a). Progress in modelling CO2 effects on crops at the

field scale will mainly depend on the ability to improve

simulations of leaf area dynamics as compared with

photosynthesis or radiation-use efficiency (Ewert, 2004).

For modelling CO2 effects at larger areas, the relative

importance of other factors, such as diversity in climate,
and soil and crop management including land-use change

for explaining yield variability (and possible interactions

with the effects of elevated CO2), need to be better

understood (Ewert et al., 2007).

Crops are subject to multiple stresses, so that analysis of

climate change alone provides only a partial view of likely

future crop yields. In order to produce robust results of

climate change impacts, a range of drivers need to be
assessed. Such assessment is beyond the scope of this

review. However, one further environmental variable that

affects crop yield is considered here. We choose ozone since

it is a second atmospheric gas that can have serious

implications for yield. Atmospheric ozone is formed in the
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Earth’s lower atmosphere through sunlight-driven chemical

reactions involving volatile organic compounds and nitro-

gen oxides. It is a strong oxidant that is harmful to plants

and crops. Exposure of plants to elevated ozone concen-

trations can result in acute visible injury, which may have

economic implications for food producers, as the damaged

crop commands a reduced market price or cannot be sold at

all (Velissariou, 1999). Plants chronically exposed to en-
hanced ozone take up an increased flux of ozone through

their leaves, resulting in reduced capacity for photosynthesis

and accelerated leaf senescence (McKee et al., 1997).

Protection mechanisms allow the plant to repair ozone

damage and detoxify leaf tissue, meaning that plant

function can remain unaffected up to a threshold value of

ozone uptake. The reduced photosynthetic productivity and

allocation of plant resources to these mechanisms leads to
reduced carbon assimilation for plant growth, and a re-

duction in biomass and crop yield (Mauzerall and Wang,

2001; Emberson et al., 2003). At higher ozone exposures,

plant protection mechanisms may be overwhelmed com-

pletely, and ozone entering the plant can result in direct

damage to plant tissue. There is also evidence that exposure

to enhanced ozone reduces the nutritional value of crops.

European wheat crops have demonstrated an ozone-
induced reduction in protein yield per area grown (Piikki

et al., 2007).

Ozone is likely to play an increasingly important role in

determining crop yields as anthropogenic sources of its

precursors continue to increase in developing economies,

leading to increasing background concentrations, especially

in the northern hemisphere. Studies suggest large enhance-

ments in surface ozone over SE Asia, central Africa, and
tropical South America over the next 50 years under

projected emissions and climate changes (Royal Society,

2008). Many of these regions are those where food security

is already at risk from rising populations, loss of cultivated

land, and climate change. Reductions of 5% in current

yields due to ozone enhancement have been estimated in

China, and projected to rise to 30% by 2050 (Long et al.,

2005). A wide range of sensitivity to ozone damage is
exhibited between crop species and between strains within

a species (e.g. wheat) (Ainsworth et al. 2008b). This may

make it possible to reduce ozone impacts on crop yield and

food security through the targeted planting of more ozone-

resistant crop strains.

Progress to date in modelling ozone and its impacts

includes global-scale estimates of future ozone impacts on

crop yield over the next 30 years, based on modelled surface
ozone concentrations (on a one degree square spatial grid)

and an exposure-based ozone damage relationship (Van

Dingenen et al., 2008). Yield losses for wheat and rice in

India and for wheat in sub-Saharan Africa were found to be

particularly significant. These results are subject to large

uncertainties, due to application of ozone exposure–damage

relationships over large scales, uncertainties in modelled

ozone, and choice of exposure index. Some local experimen-
tal data indicate that ozone-induced crop losses exceed

those predicted by the large-scale model predictions, which

rely on US-based exposure–response relationships. Addi-

tional uncertainty stems from the reliability of modelled

surface ozone fields. These rely on estimates of ozone

precursor emissions, which are particularly poorly con-

strained in developing regions of the world such as Asia

and Africa. The sensitivity of future ozone concentrations

to climate change is also poorly understood, and depends

on future land-use change, and how natural emissions from
the biosphere, and the stratospheric flux of ozone to the

lower atmosphere, will respond to future climate. These

impacts are not well understood and are currently only

rudimentarily considered by current generation atmospheric

chemistry–climate models.

Indirect impact of atmospheric composition: As greenhouse

gas emissions continue to rise, and climate changes, crops in
the majority of regions will increasingly be grown in a

warmer environment. These increases in mean temperature

are already resulting in longer growing seasons (Rosenzweig

et al., 2007), although there is no indication that this is

having a positive effect on yield, at least up to 2002 (Lobell

and Field, 2007). Projections of the future impacts of

warming seem to indicate a negative response of crop growth

and yield to 1–2 �C warming at low latitudes and small
beneficial response at higher latitudes; yet large uncertainties

remain (Easterling et al., 2007).

Mean temperature, together with photoperiod (Nigam

et al., 1994), determines the rate of plant development. The

fundamental thermal time response functions that deter-

mine the rate of crop development (Challinor et al., 2004)

suggest that warming will decrease both duration and yield,

at least up to the optimum temperature for development.
However, since a given response function of development

rate to temperature may not fit observations (Zhang et al.,

2008), care should be exercised in their use. Challinor and

Wheeler (2008b) showed that differences in the form of

these response functions, particularly at temperatures be-

yond the optimum temperature for development, mean that

different models can respond very differently to increases in

mean temperature.
In addition to large-scale changes in mean temperature,

regional changes in climate will probably affect crops. These

regional changes, particularly where they involve rainfall

and/or variability in weather (as opposed to changes in

mean quantities, such as season-mean temperature), are

particularly difficult for a climate model to predict.

Examples of potentially important regional changes include

atmospheric humidity, which affects assimilation and alters
transpiration efficiency (Kemanian et al., 2005). This pro-

cess may be very important in determining future yields in

India (Challinor and Wheeler, 2008b) and other regions.

There is also evidence that anthropogenic aerosols and

other air pollutants have changed the optical properties of

clouds, with resultant implications for solar radiation and

hence agricultural productivity (Stanhill and Cohen, 2001).

The short-term events that are most likely to affect crops
are extremes of temperature (Wheeler et al., 2000) and

drought, particularly during anthesis. Challinor et al.
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(2005d) reported reductions of up to 20% in both observed

and simulated crop yield when a 6 d heat stress event was

imposed on groundnut. The importance of subseasonal

variability in rainfall is illustrated in Figs 2 and 3. Figure 2

shows that whilst rainfall during the development of the

crop has a clear influence on observed yield (44% of the

variance explained), the crop model simulations (55% of

observed variance explained) suggest the importance of
other processes. One such process is likely to be the

subseasonal variability of rainfall. This can be illustrated

by noting that 2 years with different yields (44% lower in

1981 than in 1975), but with very similar total rainfall (see

Fig. 2), have different subseasonal rainfall distributions

(Fig. 3): the timing of rainfall in the 1975 season is such that

water availability during pod filling (from ;50 d after

planting) is likely to be higher than that of 1981. This
indicates the beneficial value of considering important

processes in large-area models.

The predictability of the above indirect influences of

increased atmospheric greenhouse gases varies across envi-

ronmental variable and across space. Temperature is

generally more predictable than rainfall, for example, and

consensus across climate models in tropical seasonal total

rainfall tends to be weaker than consensus at mid and high

latitudes. The lead time of a forecast also affects the

predictability: any prediction of weather beyond a few days
contains inherent uncertainties, which can amplify as the

predictions are made further into the future. At multi-

decadal time scales, it is uncertainties in the concentrations

of greenhouse gases that limit predictability. Further

discussion on this topic can be found in Challinor et al.

(2009b).

Interactions between biophysical processes: Crop yield is the
result of many non-linear interactions between a range of

processes, including those outlined above. Experimental

field studies and crop models are two complementary tools

that can be used to examine these interactions. The

importance under field conditions of interactions between

elevated CO2 and other factors such as ozone exposure and

temperature, water, and nitrogen stress is not fully un-

derstood. Evidence from field experiments is limited and
also points in different directions.

Consider as an example the interaction between water

stress and CO2. From a physiological perspective, water-

stressed crops are expected to show greater CO2 stimulation

than well-watered crops. This expectation has been cited in

the literature as a reason for believing that rainfed cropping

systems will benefit more from elevated CO2 than irrigated

systems (IPCC, 2001; Easterling et al., 2007). Tubiello and
Ewert (2002) showed that for a range of models and

observations, water-stressed crops did indeed show a greater

percentage increase in yield under elevated CO2. However,

when Challinor and Wheeler (2008a) reviewed FACE meta-

analyses and presented results from a range of crop models,

this response was not seen consistently in either the models

or the observations. Detailed analysis led to the preliminary

conclusion that the relationship between water stress and
assimilation may vary with spatial scale. The associated

level of model complexity was also shown to be a factor.

Despite the lack of a consistency across studies, model

comparison studies with the few experiments available have

shown that, at the field scale, crop responses to elevated

CO2 can be satisfactorily reproduced for a range of models

under a range of conditions of water availability (Ewert

et al., 2002; Asseng et al., 2004), nitrogen supply (Jamieson
et al., 2000), and ozone exposure (Ewert et al., 1999; van

Oijen and Ewert, 1999).

Ozone also interacts with the environment in a way that

alters its effect on plants. Since these interactions are non-

linear, assessing the response of crops to future ozone

concentrations requires consideration of future changes in

atmospheric CO2 and other environmental variables affect-

ing plant function and stomatal conductance (Fuhrer, 2003;
Ashmore, 2005; Harmens et al., 2007). The interaction

between ozone and CO2 is mediated by stomata, which, in
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Fig. 2. Observed and simulated crop yield (lines) for a grid cell in

western India taken from the study of Challinor et al. (2004). Bars

indicate total rainfall during the simulated development period of

the crop (planting to physiological maturity).
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date, from two of the years shown in Fig. 2. Redrawn from

Challinor et al. (2004).
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addition to admitting ozone, allow CO2, water vapour, and

oxygen to pass in and out of the plant during photosynthe-

sis and respiration. Increased atmospheric CO2 reduces

stomatal conductance, and the flux of ozone into the plant,

and can provide additional carbon for repair and detoxifi-

cation against ozone damage (Royal Society, 2008).

The interactions between ozone and carbon dioxide have

implications for the way in which ozone damage is
modelled. Dose–response relationships based on ozone flux

are preferable to atmospheric ozone exposure (e.g. accumu-

lated dose over a threshold of 40 parts per billion, AOT40;

see Fuhrer et al. 1997), since they are able to account for the

varying influences of temperature, water vapour, radiation,

soil water, phenology, and atmospheric ozone on ozone

uptake. With exposure-related indices, different meteoro-

logical and environmental conditions may result in a given
atmospheric ozone exposure producing different crop

impacts. In addition, several studies have shown that plant

response is more closely related to stomatal ozone flux than

to a time-integrated atmospheric ozone exposure (Pleijel

et al., 2000). This puts a high priority on the development of

coupled process-based models that explicitly calculate the

stomatal flux of ozone into the crop, and its dependence on

a range of environmental drivers. Limited efforts have so
far been made to model ozone effects at the explanatory

process level, accounting for interactions with other factors

such as CO2 and climate (Ewert et al., 1999; van Oijen and

Ewert, 1999; Ewert and Porter, 2000; van Oijen et al., 2004).

The validity of these approaches for large-scale applications

awaits further testing against reliable experimental data.

Such data are still scarce (van Oijen and Ewert, 1999; see

also Long et al., 2006) and are urgently required for a range
of important crop species under a range of climatic

conditions.

Abiotic stresses are also likely to interact with biotic

stresses. For example, the effects of ozone on plant function

(allocation of resources to ozone resistance) and structure

(e.g. leaf damage) may leave plants more susceptible to

damage from pests, disease, and extreme weather, which are

themselves likely to be affected by global climate change.
Detailed discussion on biotic stresses is beyond the scope of

this review.

Generating useful information

Ensuring reliability

How can the progress highlighted above be used to generate

useful information? At least two conditions apply (see Patt

and Gwata, 2002): useful information should be both

reliable and relevant to the user of the information. The

existence of complex interactions such as those described
above presents a challenge to the reliability of process-based

crop models. As shown above, mechanistic modelling

necessarily involves a reduction of real-world processes to

a set of fallible rules. A model that is too simple will fail to

represent some of the interactions that strongly influence

output variables. A model that is too complex will have

more parameters than can be constrained by observations,

increasing the risk of reproducing observations without

correctly representing the processes involved. Some param-

eters are not directly observable, and must be inferred as

part of the calibration procedure. The risk of overtuning—

where the right answer is obtained for the wrong reason,

due to an excess of tuneable parameters that cannot be
related directly to observations—is compounded by the

existence of non-linear interactions in biological systems. A

range of observations under a range of conditions is

therefore needed to ensure that each of these interactions is

correctly represented. When an overtuned model is run in

a new environment (such as under climate change), the

errors may be large. This implies that, despite the progress

highlighted above, we should be wary of being overconfi-
dent in our assessments of the impacts of climate change,

especially where it is based on the ‘validation’ of a model

followed by subsequent ‘black box’ use of that model (see

Monteith, 1996). Judicious model choice and calibration are

therefore crucial, as is the evaluation of historical perfor-

mance (Easterling et al., 1996), if our simulations are to be

consistently accurate (i.e. reliable).

Calibration parameters may be process based, acting on,
for example, leaf area index (Challinor et al., 2004) or soil

fertility (Boote and Jones, 1998). Calibration may also be

applied to model output as a yield correction factor (Jagtap

and Jones, 2002; Casellas et al., 2009). A range of more

detailed approaches have also been tried and compared

(Irmak et al., 2005). The potential for overtuning means

that calibration should be performed by using observations

of as many growth variables as possible. For example, leaf
area index can be used in addition to yield (Guerif and

Duke, 2000; Jones and Barnes, 2001). Internal consistency

checks are also very important in spotting unrealistic

simulations. Possible checks include radiation-use efficiency

and specific leaf area (where these are not input parameters;

see, for example, Challinor et al., 2004). Checks such as

these can be combined with the methods outlined above:

observations can be used to constrain ensembles of crop
simulations (Challinor and Wheeler, 2008a). This approach

can result in a reduction in the associated uncertainty from

the estimates with unconstrained ensembles, as shown by

Challinor et al. (2008a). That study, which accounted for

both crop and climate uncertainty, also showed that, for the

region and crop studied, doubled CO2 without adaptation

was highly likely to result in a reduction in yield. Thus

quantifying uncertainty does not preclude relatively certain
statements. Ensemble methods can ensure that we avoid

unwarranted precision in our simulations, and observations

can ensure that we avoid unnecessarily large uncertainty

ranges.

Informing adaptation

Once we are confident that our estimates of climate change

impacts are reliable, they can be used to create information

relevant to the adaptation actions taken by stakeholders.
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Challinor (2009) discusses this topic at length, and assesses

the potential for adaptation to climate for a crop in India.

In that study, a number of existing model results were used

to assess the extent to which genotypic variation might be

used to adapt to climate change. The requisite crop genetic

properties determined from the simulations were compared

with those of existing germplasm. Interestingly, a separate

study showed that under doubled CO2 in India, the
uncertainty in the simulation of adapted crops may be

greater than that of non-adapted crops (Challinor et al.,

2008a).

When considering adaptation, it is important to consider

how weather and crop yield forecasts will be used, and what

spatial and temporal scales will be the most appropriate for

the users. Useful weather/climate forecasts can range from

a few days ahead for some crop management decisions, to
decades in the future for infrastructure and strategic

planning. For example, ensemble climate modelling can be

used with crop models in order to predict crop yield a season

ahead of the harvest (Challinor et al., 2005c). Information

should also be provided in relevant formats (Stone and

Meinke, 2005). Whether the information best suited to users

is based on computer-intensive systems, or on less high-tech

systems such as observational networks and capacity
building, depends to a large extent on the particular users

considered (see, for example, Patt et al., 2005). In Africa,

for example, a prudent way to address the threat of climate

change may be to focus on strategies for coping with

climate variability, rather than longer term climate change

(Washington et al., 2006). This may mean a greater focus

on in situ and remotely sensed observations as well as

consideration of the multiple stresses that act on food
security (Gregory et al., 2005; Haile, 2005; Verdin et al.,

2005).

In the seasonally arid regions of the developing world,

people are particularly vulnerable to interannual and intra-

seasonal rainfall variability, through dependence on rainfed

agriculture. The skill of forecasts is also often higher in

these mid-latitude regions than it is further north (DTI,

2001). Hence the potential benefits of climate forecasting
may be particularly high in tropical regions, where there

may be strong relationships between climate and impact

variables such as crop yield (see also WCRP, 2007).

Future trends and challenges: holistic
impacts and adaptation research

Having reviewed progress in modelling the impact of

climate change on crops, and examined how reliable and

useful information may come from this endeavour, what

can be said of the progress needed in the near future? Part

of generating relevant and reliable information is synthesiz-
ing knowledge effectively and applying it appropriately.

One of the tools that enables this endeavour is the hardware

on which models are run. Ongoing increases in computer

power create the potential for increasingly sophisticated

modelling techniques. For climate and impacts modellers,

this presents a choice (see Challinor et al., 2009b): increase

the complexity of the model, increase the number of

simulations, or increase the spatial resolution. Increases in

complexity are subject to the constraints identified earlier.

Increases in the number of simulations create larger

ensembles and hence more objective quantification of

uncertainty (see above). Increases in spatial resolution will

permit analyses across a broader range of spatial scales.
This in turn may create one of the ingredients in a synergis-

tic modelling approach that aims to increase the accuracy

and reliability with which yield is simulated.

Synergistic approaches to yield prediction

Efforts to synthesize knowledge on the response of crops to

climate change have increased in recent years (see Easterling

et al., 2007; Tubiello et al., 2007b). These studies, which

review existing modelling efforts and try to form a consen-

sus, are an important part of the process of increasing our

understanding. They are faced with a difficult task, since

each of the individual studies tends to use only one method
for one region, and for a limited number of crops (see above

and Challinor et al., 2007). In order to address this, some

crop model intercomparison studies have been performed

(Jamieson, 1998; van Oijen and Ewert, 1999; Jamieson

et al., 2000; Ewert et al., 2002). These have shown that

simulations differ across models, due to significant differ-

ences in the structure of the models. For example, some

models are based on the concept of radiation-use efficiency,
whilst others are based on water- or nitrogen-use efficiency;

some models emphasize sink development, whilst others

focus mainly on sources. Clearly, the structure of a model

and the processes considered, including their relative

importance, are determined by the aims for which the

models are developed. These aims are in part determined by

the region for which the model was developed, since there

are considerable regional differences in the factors de-
termining crop responses (Reidsma et al., 2009b).

As a result of this spatial heterogeneity in the determi-

nants of yield, several studies show that crop models have

difficulties in reproducing yields at multiple sites (Ewert

et al., 1999; van Oijen and Ewert, 1999), farms (Ewert et al.,

2002), and regions (Reidsma et al., 2009a). Unsatisfactory

model performance at the regional scale can be due to the

inappropriate consideration of factors and processes de-
termining yield variability (Reidsma et al., 2009a) and/or

the aggregation of input data which may inconsistently

reproduce the spatial variability of growing conditions (e.g.

climate and soils) within a region (e.g. Hansen and Jones,

2000). Also, factors explaining spatial yield variability

across regions can be different from those explaining

temporal variability within regions (Reidsma et al., 2007,

2009b). Thus, there is no single modelling approach that
performs equally well across regions.

Similar reasoning can be applied to simulation across

a range of spatial scales, since this is another determinant of

the structure of a model. For some scales and regions,

climate may be the dominant determinant of crop yield.
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Where biotic stresses (see, for example, Tubiello et al.,

2007b) or other non-climatic processes dominate, there may

be no observed relationship between climate and crops;

here, more detailed site-specific modelling may succeed in

demonstrating predictability (Gadgil et al., 2002; Carbone

et al., 2003), by explicitly including determinants of yield

variability other than climate. Bakker et al. (2005) showed

that the significance of the climate signal increases with
spatial scale, suggesting that non-climatic factors such as

management or soils may become more important at

smaller scales.

Given the importance of scale and geography in de-

termining crop productivity, perhaps the greatest challenge

for future syntheses of knowledge on the response of crops

to climate change is the balance between generality and

specificity in region and scale. Reducing complexity to the
most important yield-determining factors and processes

may result in different region- and/or scale-specific models.

This in itself may reduce the generality of the results.

Efforts to improve synergy between crop modelling

approaches must therefore choose whether to emphasize

generality or specificity. Increasing generality has been

proposed by Yin and van Laar (2005), who developed

improvements to the underlying physiological relationships
in the GECROS model, resulting in wider applicability

across a range of conditions. Adam et al. (2009) propose

a generic modelling framework that assembles regional-

scale models depending on the regions and the relative

importance of the determinants of yield in those regions.

The ensemble techniques reviewed above are an attempt

to avoid unwarranted precision (i.e. specificity). The techni-

ques have been used to examine the form of the response of
crop yield to mean temperature (Challinor et al., 2008a).

The results showed that the response derived from an

ensemble systematically varying both climate and crop

responses to elevated CO2 can have a different form from

that derived from a study synthesizing a range of disparate

results (that of Easterling et al., 2007). The results also

showed variation in response of crop development and yield

to mean temperature across a range of crop models. Similar
techniques were used by Challinor and Wheeler (2008a, b),

who used a crop simulation ensemble combined with

sensitivity analyses on two other crop models. Coupled with

observational studies, approaches such as these can be used

to understand the fundamental biophysical processes de-

termining crop yield across scales and across regions.

Combining biophysical and socio-economic drivers

Biophysical processes are not the only determinants of crop

yield and productivity. The role of socio-economic drivers is

increasingly being realized by the climate and impacts

modelling community. Efforts to increase the reliability,
and also the relevance, of predictions are therefore begin-

ning to draw on a parallel body of work that has explored

the influence of human action (e.g. adaptation) on crop

productivity. Unsurprisingly, these studies show that pro-

ductivity relies on capital and labour inputs and a range of

other factors (Mendelsohn, 2007). Such factors may trigger

a range of inseparable responses in yield, including step-

changes (e.g. policy, infrastructure, pest), smooth trends

(e.g. technical innovation), or cyclical changes (e.g. crop

rotation, rainfall). Drawing on development studies, and

household/village-scale livelihoods work in poorer parts of

the world (see, for example, Adger, 1999), a range of more

qualitative data suggests that the way farmers adapt to
climatic problems results from the complex and unpredict-

able interactions between society and the environment

(O’Brien and Leichenko, 2000).

Much of this work has involved asking key informants

about how weather-related problems were overcome in the

past. As such, these studies tend to use participatory

methods (Dougill et al., 1999) and find their intellectual

foundations in the work of Amartya Sen who studied the
causes of 20th century famines and presented his ‘food

entitlement theory’. Sen concluded that those socio-eco-

nomic factors that constrain an individual’s ability to switch

entitlements are more important in creating a famine than

simple meteorological anomalies (Sen, 1981). Food entitle-

ment theory has been expanded on by researchers doing

field work where key interviews, focus groups, and ques-

tionnaires are used to conduct studies on how households
and villages adapt to overcome weather-related problems

(Bebbington, 1999). Researchers have explored how house-

hold members switch between different livelihood strategies

(Scoones, 1995), and found that by diversifying their

income sources householders can become less vulnerable to

climate variability (Hageback et al., 2005). Thus far,

however, it has proven difficult to ‘up-scale’ results from

these field studies, and current attempts have only generated
quite general and qualitative conceptual frameworks

(Turner et al., 2003; Ericksen, 2008).

Recent studies have analysed relationships between farm

characteristics and yield variability (Reidsma et al., 2007,

2009b) across regions in Europe. As evident from these

studies, farm intensity, farm size, and land use have been

identified as important characteristics for explaining a signif-

icant part of the spatial and temporal yield variability. It
was also shown that farm diversity in a region can strongly

affect (and cancel out) the climate signal (Reidsma and

Ewert, 2008). Considering these farm characteristics in

a model evaluation study revealed that some of the de-

viation of the simulated regional yields from observations

could be explained by these characteristics. Yet, the in-

tegration of this information into biophysical models

remains difficult (Vincent, 2008).
In order to bring socio-economic and biophysical

approaches together and develop formal mathematical

models of climate impacts on food security, those socio-

economic factors that limit or enhance production and

adaptation can be identified and quantified using the same

spatial scale as climate models and large-area crop models.

Work supporting this has been undertaken by characteriz-

ing those socio-economic factors that, in the past, seem to
have buffered harvest from drought (Fraser et al., 2008) and

the development of indicators of socio-climatic exposure
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(Diffenbaugh et al., 2007). Simelton et al. (2009) have

shown that regions may be vulnerable to drought due to

land, labour, or capital constraints, and that, as regions

develop economically, the source of vulnerability may shift

from economic constraints to a lack of land or labour.

However, these results are preliminary; more work is needed

to understand fully how socio-economic processes influence

climate–crop relationships, and trends in production, at the
regional scale. Once this has been done, the socio-economic

and biophysical aspects of crop productivity can be

examined together using state-of-the-art methods and at

common spatial scales, resulting in more holistic assess-

ments of climate change impacts and adaptation. Method-

ologies are therefore required that can integrate the main

food system processes (Schmidhuber and Tubiello, 2007;

Tubiello et al., 2007b) and suggesting adaptation options
that take account of the full range of stresses on agriculture

(see Howden et al., 2007; Morton, 2007). Integrative work

such as this needs to be based on an understanding of

fundamental processes and their associated uncertainties

(see above).

Linking simulation with adaptation

The challenges identified above have focused principally on

increasing the reliability of simulations. How can we go

about increasing the relevance of the information produced

by crop and climate models? Closer links with efforts to

develop adaptation options would seem to be an effective
way to do this. For example, plant breeding operates on

a 7–10 year time scale, producing the varieties that are best

adapted to the environment (Austin, 1999). This time scale

is unlikely to be sufficient to prepare for the increase in

extreme events expected under climate change (see Randall

et al., 2007). Also, plant breeding cannot take place at all

the locations where adaptation to climate change will be

needed. Just as judicious use of crop models can comple-
ment field studies, there is the potential to link simulation

studies more closely to plant breeding and other adaptation

measures. Such methods could be used to identify the

regions where newly bred varieties may perform well, thus

broadening their domain of applicability. They also provide

a tool for making the simulation studies relevant to a specific

adaptation endeavour. A sequence of links is likely to be

needed in order to connect simulation and plant breeding;
existing concepts [e.g. ideotypes (Donald, 1968; Sylvester-

Bradley and Riffkin, 2008)] may prove to be a useful part

of this.

Efforts such as these can only be carried out with the will

and ability of a range of scientists. Our understanding and

modelling of climate impacts is based on fundamental

physics, biology, and chemistry, and the interactions

between them. Our ability to predict is therefore dependent
on the quality of our single- and cross-disciplinary research.

Similarly, our ability to inform adaptation will depend

upon the extent to which we can combine all relevant

scientific analyses into holistic assessments. Just as there are

many successful studies linking crop and climate science

(Huntingford et al., 2005; see also Slingo et al, 2005), it

should be possible to link simulation studies more closely

with a range of adaptation endeavours.

Conclusions

There are many complex processes and interactions that
determine crop yield under climate change. These include

the response of crops to mean temperature, the interaction

between water stress and CO2, and the interaction between

ozone and a range of environmental variables. As a result of

this, and of the importance of scale and geography in

determining crop productivity, perhaps the greatest chal-

lenge for future syntheses of knowledge on the response of

crops to climate change is the balance between generality
and specificity in region and scale. It is clear that climate

impacts research requires appropriate degrees of integration

and specialization (Challinor et al., 2009b). To date, efforts

to generate knowledge for policy and adaptation have been

largely based on syntheses of published studies. Synergistic

approaches are now needed that include the following.

(i) Reliable quantification of impacts uncertainty. This should
be carried out as objectively as possible and is likely to

include the use of crop simulation ensembles and/or

sensitivity analyses. Since the quantification of uncertainty

does not preclude a high degree of certainty regarding some

statements, there is every reason to believe that this

approach will prove to be productive.

(ii) Techniques for combining diverse modelling approaches

and observations. A focus on processes, employing a range

of models and observations in order to increase our

understanding of non-linear interactions, is likely to be an

effective strategy for reducing uncertainty. Coupled model-

ling approaches are likely to form a part of this strategy,

since non-linear interactions between yield-determining pro-

cesses may result in complex coupling between; for example,

atmospheric composition and climatic drivers. Observations
are also important: whilst ensemble methods can ensure

that we avoid unwarranted precision in our simulations,

observations can ensure that we avoid unnecessarily large

uncertainty ranges.

(iii) Judicious choice and calibration of models, including

simulation at appropriate levels of complexity that accounts

for the principal drivers of crop productivity. Even when
a range of models is combined in some way, judicious

choice and use of models is required. Since no one model

can claim to represent reality entirely accurately, models

should not be calibrated or run as ‘black boxes’. Thus

different models may be used for different regions, depend-

ing on the relative importance of driving variables in these

regions. Also, modelling methods are needed that can

account for both the biophysical and socio-economic
determinants of crop productivity.

In addition to providing a new paradigm for the

generation of knowledge, such an approach will lead to

reliable methods for linking simulation with adaptation.
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Thus we can move beyond synthesizing knowledge and

begin to make the best use of the huge global effort to

understand and predict climate change.
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